When Outfitting Your Lab, Choose CO2. Here’s Why:

(Freelance)-Cannabis-extraction-technologies-feature-image

THE DIFFERENCES IN CANNABIS EXTRACTION TECHNOLOGIES

The cannabis industry today is comprised of three main extraction technologies; carbon dioxide (CO2), ethanol and hydrocarbons. Although these extraction methods are different, they all try to achieve the same objective of extracting valuable compounds from cannabis plant material. The main compounds targeted by these extraction systems are cannabinoids and terpenes, but each extraction method has its own respective advantages and disadvantages when extracting these compounds. Not only are the differences solely in how the compounds are extracted, but also extend to extraction safety, environmental impacts and costs. Having an understanding of these extraction methods is important when determining what cannabis extraction method to use. The characteristics that would be important for someone looking to purchase cannabis extraction equipment are discussed below for the three extraction methods mentioned.

CO2

CO2 in its liquid form can be used as an extraction solvent if its temperature and pressure are within the liquid phase range, or as a supercritical fluid if its temperature and pressure are above both 87.98 F and 1071 psi. It is an outstanding solvent for volatile compounds such as terpenes and, as a supercritical fluid, is good for cannabinoid extraction. The final separation of the solvent from the extract is achieved by a density drop that allows CO2 to evaporate from liquid or supercritical fluid to gas. The liquid cannabis oil that is left behind is free of any residual solvents.

Table 1: CO2 extraction system characteristics

Criteria CO2
Scalability Low to high
Infrastructure Required No significant infrastructure required
System Cost Medium to high
Product Options High; tuneability and terpene preservation allows for diverse product offering
Extraction Run Times Medium - long
Energy Usage Low to medium
Solvent Cost Very low
Tuneability Yes
Terpene Preservation Yes
Post Processing Winterization may or may not be required, depending on feedstock input and desired product formulation
Residual solvent in crude extract No residual solvent in extract
Pre-cool solvent No
Feedstock waste No residual solvent, general waste
Solvent Generally Recognized as Safe (GRAS) Yes
Safety High pressure
Solvent disposal Vent to atmosphere

The tuneability of CO2 and its ability to switch between a liquid and a supercritical fluid is a tremendous advantage for this process, and allows for a more diverse range of product offerings. Depending on the chosen parameters, extraction of undesirable compounds such as chlorophyll and lipids can be reduced, or a terpene pull can be completed using a subcritical run. As CO2 can extract at lower temperatures and pressures, subcritical parameters are good for targeting low molecular weight terpenes while leaving other components behind. Typically, with CO2 extraction, a post-processing step of winterization is required to remove undesirable compounds.

Another major advantage of using a CO2 extraction system is the relatively small infrastructure requirements. Unlike ethanol or hydrocarbon extractions that require a Class 1 Division 1 or 2 space, no specialized infrastructure is needed. This represents significant cost savings up front and helps mitigate the expense of the equipment.

CO2 extraction is the leader in safety in terms of residual solvent toxicity as well as environmental impacts relating to solvent disposal. Most extractors will reuse the CO2 or simply vent it to the atmosphere, saving on costly hazardous waste solvent disposal. CO2 is relatively inexpensive to restock, so even when levels need to be topped up, the costs are minimal. This is yet another area in which CO2 proves its affordability in the long run. With the savings on infrastructure, and the long-term costs of maintaining solvent stock, CO2 ends up being a more cost-effective process than the alternatives.

Ethanol

Ethanol extraction is best performed at temperatures below -40 °C, where the co-extraction of undesirables is minimized. However, cooling ethanol to these temperatures can require significant amounts of energy and time. Ethanol is a polar molecular, and this can create issues as it will readily mix with water and dissolve water soluble molecules such as chlorophyll. However, at temperatures below 40 °C this phenomenon is limited. During the extraction process, ethanol is passed over the cannabis material to dissolve the active compounds in the plant.

Table 2: Ethanol extraction systems characteristics

Criteria Ethanol
Scalability Low to medium
Infrastructure Required C1D2 or C1D1 space
System Cost Low to medium
Product Options Low to medium; poor terpene solubility means smaller product offering
Extraction Run Times Short to long, depending on solvent cooling duration
Energy Usage Low to high, depending on solvent cooling
Solvent Cost Medium to high
Tuneability No
Terpene Preservation No
Post Processing Winterization may or may not be required, depending on solvent cooling
Residual solvent in crude extract Solvent recovery required
Pre-cool solvent Below -40°C to minimize co-extraction of undesirables
Feedstock waste Residual solvent, hazardous waste
Solvent Generally Recognized as Safe (GRAS) Yes
Safety Flammable
Solvent disposal Hazardous waste

A major advantage of ethanol extraction systems is that they have a low cost of entry. However, due to ethanol’s flammability, infrastructure to support such an extraction system is more costly due to the requirements for hazardous locations (C1D1 or C1D2 – which means there is an ignitable concentration of flammable gas or vapour that has to be contained).

Terpenes have low solubility in ethanol which results in an oil that can lack flavour and aroma, and a reduced product offering for the extract. What ethanol excels at is cannabinoid extraction and it tends to have shorter extraction run times which is highly beneficial for throughput. The tuneability of the ethanol extraction method is very low and is primarily used to target cannabinoids. Ethanol, like CO2, is also generally recognized as safe (GRAS) for consumption by the FDA. But an important consideration is solvent recovery as residual solvent in the product could harm end users. Furthermore, ethanol waste is classified as hazardous, which in turn requires special handling and disposal.

Butane

Hydrocarbon extraction equipment typically uses butane, propane, or hexane as the extraction solvent (although most commonly butane). Cold butane is washed over the cannabis material, which slowly dissolves the cannabinoids and terpenes. As it is non-polar, it binds to the more fat-soluble components of the plant (cannabinoids, terpenes and lipids) and less so to chlorophyll and other plant metabolites. As it has a low boiling point (-0.5°C/31.3°F), very few temperature sensitive terpenes are lost when boiling off the residual solvent from the concentrate solution.

Table 3: Hydrocarbon extraction systems characteristics

Criteria Hydrocarbon
Scalability Low to medium
Infrastructure Required C1D1 space
System Cost Low to medium
Product Options Medium to high; terpene preservation and cold processing allows for diverse product offering
Extraction Run Times Medium
Energy Usage Low
Solvent Cost Low to medium
Tuneability No
Terpene Preservation Yes
Post Processing Winterization may or may not be required and desired product
Residual solvent in crude extract Solvent recovery required
Pre-cool solvent No
Feedstock waste Residual solvent, hazardous waste
Solvent Generally Recognized as Safe (GRAS) Yes (for butane)
Safety Pressurized and explosive
Solvent disposal Hazardous waste

Butane extraction is excellent for the extraction of cannabinoids and terpenes under the same conditions, and when done properly can produce a terpene-rich end product that closely resembles the starting plant material. This process tends to produce great tasting concentrates like shadder, budder, sauce and more.

However, butane and other hydrocarbons are highly flammable and volatile, which means there are strict regulations that surround butane extraction systems. Again, like ethanol extraction, a hazardous location space is required, and a solvent recovery step is needed following extraction. The spent butane is also classed as hazardous waste and appropriate environmental disposal is required.

While ethanol and butane extraction systems have their place in cannabis extraction, CO2 has proven itself to be one of the most adaptive and safe cannabis extraction methods. The CO2 extraction process is well known for its low up-front infrastructure cost, safe solvent use, scalability, and tunability. These factors, along with its long-term environmental sustainability, make CO2 an excellent choice for cannabis extraction.

ICBC Berlin Cannabis Extracts Panel

ICBC Berlin Cannabis Extracts Panel featuring Vitalis Co-Founder and COO, Pete Patterson

Vitalis Extraction Technology COO and Co-Founder, Pete Patterson was among a group of panelists speaking at the International Cannabis Business Conference (ICBC) Cannabis Extracts panel in Berlin last month.

Along with panelists Mike Palumbo of Lab Society, Dave LaRussa of Apeks Supercritical, Zach Peyser of Sho Product’s, and moderator and freelance journalist, Michael Knodt, they discussed present extraction products and technology and where the industry is headed in terms of industry standardization and compliance.

In a young, burgeoning market, there are a number of concerns involving standardization of products, and the regulations surrounding them. Expertise from North American companies can be invaluable in Europe, as the region starts to tackle industry questions of legislation, medicinal vs recreational and distribution.

As much of the knowledge base in Europe tends to be held privately, events like ICBC help promote discussion and idea sharing to a wider audience. As a global leader in the extraction space, Vitalis was proud to send Pete to speak on this panel, further demonstrating the company's commitment to knowledge sharing and thought leadership.

For more information on the International Cannabis Business Conference, locations and event dates, visit: https://internationalcbc.com/

Press Release – October 2, 2018

Pressure gauge

Canada’s First ASME Certified Extraction Equipment Manufacturer

Vitalis Extraction Technology Raises Bar, Sets New Standard in Growing Cannabis Industry

KELOWNA, BRITISH COLUMBIA,CANADA , October 2, 2018
Vitalis Extraction Technology, the largest supercritical CO2 extraction equipment manufacturer serving the international cannabis industry, today claimed the title as Canada’s first and only American Society of Mechanical Engineers (ASME) BPV certified extraction original equipment manufacturer (OEM) in the cannabis industry. The announcement comes on the heels of the company’s rapid expansion that doubled its production capacity.

While all Vitalis Extraction Technology equipment has always been designed, fabricated, and tested and certified in accordance with the latest ASME and CSA codes, the recent ASME certification now allows Vitalis to manufacture its own certified pressure vessels in-house, owning the process from start to finish.

“Becoming ASME certified to manufacture fully-certified vessels in house was a huge undertaking and an even bigger accomplishment,” said Pete Patterson, COO and co-founder of Vitalis Extraction Technology. “ASME completed an extensive audit of our fabrication facility and processes and found our methods and procedures to be excellent. Being able to produce certified vessels in house is unprecedented in our nation’s industry. Reaching this goal was a true team effort that involved everyone from our founders to engineers and fabricators who all knew what it would take to keep us ahead in this competitive and growing market.”

Founded in 2016, Vitalis Extraction Technology produces the most sophisticated high-flowing, industrial-scale, supercritical CO2 extraction systems for the cannabis industry. Renowned for their reliability, scalability, and continuous operation, all Vitalis systems are designed and manufactured in accordance with ASME and CSA Standards for Boiler, Pressure Vessel and Pressure Piping Construction. Each vessel is stamped with a CRN and NB registration number confirming that the vessels meet both US and Canadian code requirements.

“Simply being ‘designed-to-code’ isn’t enough when you’re handling a high-pressure system,” said Joel Sherlock, chairman and co-founder of Vitalis Extraction Technology. “Extraction systems are a required component in cannabis oil production. With something so imperative yet potentially dangerous, safety is critical. Owning this process allows us to continue to build certified, ‘future-proof’ machines, designed to expand for increased output and volume as a customer’s demands increase.”

With full legalization on the horizon, tightened regulations are inevitable. Vitalis' ASME certificate affirms that each system is built in accordance with the latest regulatory codes, eliminating downstream problems for customers by helping to ensure compliance with their local jurisdictional requirements for installation and operation. Voted Top Extraction Equipment at the 2017 Lift Canadian Cannabis Awards, Vitalis is on the forefront of emerging Canadian and global markets. On track for a 105% increase in sales this fiscal year, these accomplishments confirm Vitalis’ place as the largest commercial supercritical CO2 extraction equipment company in the cannabis space in North America.

PRESS CONTACT

For Additional Information, please contact

Judy Campbell, Campbell Consulting
judy@campbellconsulting.com, 541-410-9113

The Importance of Certification for Pressure Vessels

Air tank with pressure gauge.

Do you work in an industry where the use of pressure vessels is common?

Then, explosions may be something you worry about. You want to stay safe at work and go home at the end of the day in one piece. Have you ever looked at a vessel and wondered how it can keep its pressurized contents safely in place? Who makes sure that these vessels are safe? Have you ever noticed the stamp or plate on a vessel and wondered what it means?

Let's find out!

What are Pressure Vessels?

If you don't work in a field that routinely uses pressure vessels, you may not know what they are. Simply put, they are containers that hold pressurized contents.

This means that the container holds its contents, either a gas or a liquid, at a different pressure than the atmosphere. It is critical that this vessel maintains its seal. Otherwise, the sudden pressure change will cause an explosion.

The vessels were originally invented to handle the steam needed to operate a steam engine back in the day. But now these vessels are very useful for a variety of applications. Everything on the following list uses these vessels in some manner:

  • Recompression chambers
  • Mining operations
  • Nuclear reactor vessels
  • Distillation towers
  • Submarines
  • Spaceship habitats
  • Petrochemical plants
  • CO2 extraction systems

These vessels are also routinely used for storing liquefied gases like propane, butane, LPG, chlorine, or ammonia.

Safety

As you can imagine, safety is a huge concern with these vessels. If you've ever popped a balloon with a pin, you have an idea of what would happen if a pressure vessel suddenly lost its seal.

Safety is the number one reason why proper certification is so important. The American Society of Mechanical Engineers (ASME) put into place their rather stringent standards in 1914. Before this, working with these vessels was very dangerous.

The vessels often failed and exploded. These explosions often severely injured or even killed anyone that was nearby. Obviously, this was not ideal. So the ASME put into place inspections and certifications that these vessels had to pass.

It didn't start out this big, but now the ASME's code encompasses 28 books and over 14,000 pages. It covers residential and industrial boilers and every pressure vessel imaginable.

It is an international code that everyone should adhere to. After all, it doesn't matter where you are on the planet. Physics is still physics, and a vessel will still explode under the same miserable conditions.

ASME Certification

Not all these vessels are created equally. They can handle a wide range of PSI. Thus the ASME construction code has different standards that apply to the vessels. Regardless, though, any vessel that will handle more than 15 PSI is subject to the ASME code.

The vessels are divided into three groups. Those that handle up to 3,000 PSI, up to 10,000 PSI, and those that handle pressures over 10,000 PSI.

The ASME has guidelines for the types of materials that can be used to build these vessels. Some requirements apply to all vessels. Others only apply according to how much pressure the vessel will handle.

Once the vessel has been approved, it gets a stamp or plate that boasts ASME certification. Many insurance companies will only cover a company that uses pressure vessels if every vessel has this ASME certification.

Of course, it's possible that any pressure vessel can fail. Don't assume that a vessel is foolproof just because it has been certified. But, meeting the certification standards greatly reduces the risk of failure and a potentially serious tragedy.

Good Design

In addition to the materials that can be used, the code also covers how the vessel should be designed. The ASME clearly lays out design standards that a vessel must meet or exceed to get certification. Even the shape of the vessel is essential for proper construction.

This also extends to the fabrication process. Manufacturers should follow certain procedures during fabrication that will help ensure the integrity of the vessel. Manufacturers must also follow a quality control regimen to ensure that the vessels they produce are solid.

The ASME also keeps an eye on the manufacturer's track record. The vessels that a manufacturer produces must consistently meet the ASME standards.

Transportation

While a pressure vessel can explode at any time, they are particularly dangerous during transport. The vibrations and jostling about that happen during transport can be just enough to cause the vessel to fail.

Imagine the devastation if a vessel explodes on a public roadway.

For this reason, the Department of Transportation also gets involved here. They issue an R-stamp that is very important. If a vessel needs repairs, the welder must have this R-stamp certification.

The welder (and the shop) have to undergo strict testing to receive this certification. Once they obtain it, they have to stay in good standing with the National Board of Boiler and Pressure Vessel Inspectors.

Improper repair of these vessels is a hazard to the public that is taken very seriously. This certification ensures that everybody stays safe.

Stay Safe

Who knows how many lives have been saved because of the ASME standards. But the only way to ensure that they keep saving lives is by following them.

Now that you know what ASME certification is and why it's so important, it helps to ensure that your vessels meet all the codes and standards. If you see a pressure vessel in use that doesn't have the proper certification, say something. You could potentially save someone's life.

Would you like to learn more interesting tidbits about chemical or mechanical engineering? Be sure to check out our education page. We've got great bits of interesting information about the exciting world of engineering.

INFOGRAPHIC | The Dangers of Butane

Stay Safe when you're extracting

Each week, more and more of these explosions make the news. Take a look at some real headlines from the past couple months alone.

Despite being an effective solvent for cannabis, butane is flammable and dangerous. Countless individuals are severely injured every month due to butane extraction labs, often located in densely-populated residential areas.

 

Butane Explosions

INFOGRAPHIC | Safety First – Does Your Pressure Equipment Have This?

Worried about your pressure equipment?

Certified equipment is vital to the continued success of your business.

Take a look at our infographic to learn about some of the certifications required to stay compliant and operational.

Certifications

Licensing and Regulations for Extraction Efforts

Cultivation of marijuana , cannabis sativa , flowering plant as legal medicinal drug , herb , ready to harvest

Demand for high-quality cannabis extracts is surging. Fresh recreational and medical laws continue to burst into existence. Nearly a dozen states are considering adopting pro-cannabis laws this year.

Old-fashioned extraction efforts are blazing back into popularity. Supercritical CO2 extraction has long been a staple in the food and beverage industry. Cannabis manufacturers, however, have historically shied away from the expensive method. Until now.

The cannabis industry is booming; a lot of growers and manufacturers are flush with cash. Cannabis connoisseurs crave variety at dispensaries.

CO2 oil is popular because it's a pure, clean substance that's devoid of the usual harsh solvents used to create cannabis concentrates. States with legalized cannabis have introducing licensing and regulatory rules for cannabis concentrates.

This post will delve into the basics of supercritical CO2 extraction methods and explain the regulations guiding extract artists in their work. Keep reading to find out more about CO2 oil and the laws surrounding it.

What is CO2 Extraction?

Supercritical CO2 extraction processes take advantage of a bizarre property of carbon dioxide (CO2). Extreme pressure and temperature are combined to force the CO2 beyond its critical point.

Supercritical fluids have features midway between a gas and a liquid at the same time. While in this volatile state, supercritical CO2 is an ideal solvent. It breaks down the plant structures in cannabis and allows the technician to isolate cannabinoids and terpenes, chemicals in cannabis that affect the human body and brain.

Traditional cannabis extraction efforts rely on harsh, flammable solvents.

Licensing and Regulations

The cannabis industry has been legitimized. Strict rules now govern cannabis manufacturers. Most states have licensing and accreditation requirements. They also have standards that must be met before the cannabis can be sold.

Laws change drastically by state. States with legalized recreational cannabis seem to have the most robust regulatory system. For instance, California law states that: "Every person who manufactures cannabis products shall obtain and maintain a valid manufacturer license from the Department..."

Cannabis professionals that want to produce CO2 oil in most states need to be properly licensed. There are additional rules about the product itself. A lot of states with legal cannabis require that it be tested by an independent laboratory before it reaches dispensaries.

CO2 extraction efforts should produce a clean extract that's free from contaminants. States with lab testing requirements check for pesticides and bacteria as well as other impurities.

Volatile vs Non-volatile Manufacturing

State regulators worry about flammable, volatile solvents. California law separates cannabis manufacturers based on their extraction efforts. You need a different license to produce butane hash oil than CO2 oil. California lawmakers split manufacturers into two groups, distinguished by their use of volatile or non-volatile solvents.

According to last year's Medicinal and Adult-Use Cannabis Regulation and Safety Act, a volatile solvent "is or produces a flammable gas or vapor that, when present in the air in sufficient quantities, will create explosive or ignitable mixtures."

CO2 is a non-volatile solvent. California cannabis manufacturers who use a professional CO2 system to create their extracts would be considered Level 1 Manufacturers. Extract technicians who worked with chemicals like butane are Level 2 Manufacturers. It's more difficult and more expensive to apply for a Level 2 license. Few California neighborhoods allow Level 2 cannabis facilities.

California law isn't a federal dictate, but the state's cannabis market is now the largest in the world. Smaller markets look to California as an example.

Problems with Butane Extraction Efforts

Consumers are wary of butane. Last year, California legislators passed a bill that treats butane like a serious drug. Gov. Jerry Brown eventually vetoed it, if he hadn't the state's butane hash oil producers would have gone out of business. The bill limited the amount of butane a consumer could purchase each month and required dispensaries to keep track of people's usage. "This type of 'point-of-sale' regulation works," the bill's authors wrote. "It has a proven track record in the detection and dismantling of methamphetamine labs..."

Denver, Colorado was the first city to slap regulations onto the butane hash oil process. Engineers analyze new facilities to make sure that they're compliant with the law. In 2014, 32 butane hash oil explosions were reported in Colorado alone.

Manufacturers using CO2 are scrutinized as well, but the regulations are less burdensome. Manufacturing CO2 oil-based cannabis products is often cheaper and easier than using butane.

Benefits of CO2 Extraction

Cannabis is heavily regulated. The law, however, is friendlier toward to certain types of extraction methods than others. Butane is risky. Ignoring the health risks of ingesting the chemical, labs that work with Butane are at risk of blowing up.

That's why so many California counties are okay with manufacturing facilities that use CO2 to create cannabis extracts but are reluctant to approve labs that use flammable solvents. Creating butane hash oil is dangerous if you're not experienced.

California, Nevada, Colorado, and Washington all have rigid regulations and licensing rules controlling their legal cannabis market. Other states are adopting similar laws.

CO2 oil is preferable to other cannabis-infused products because its health benefits appeal to consumers and regulators alike. It's an FDA-approved solvent that's doesn't harm the environment or the human body.

Find Out More

Supercritical CO2 extraction is an increasingly popular way to produce high-quality cannabis concentrates. It's a pure method that produces terpene and cannabinoid-rich extracts without sullying the product with potentially toxic materials. Cannabis growers and concentrate manufacturers who want to satisfy a diverse client base should look into producing CO2 oil.

To learn more about supercritical and subcritical CO2, browse through the CO2 Science section of our site.